

Google Earth Engine tools for CCDC

This is the documentation for the toolbox to use the Continuous Change Detection and Classification (CCDC) algorithm on the Google Earth Engine.

CCDC is used to monitor changes in land cover, land use, or condition using dense time series of satellite imagery. As the name suggests, there are two primary components: change detection and classification. CCDC has primarily been applied using Landsat data, but these tools are designed to be data agnostic. This toolbox provides applications and a Javascript API for performing all necessary steps in using CCDC, which include:

	Visualizing pixel-based time series and CCDC model fits

	Performing change detection for entire study regions

	Viewing CCDC coefficient images

	Producing “synthetic” imagery

	Land cover classification

	Creating maps of land cover/use change

This documentation and the tools are a work in progress. For any questions contact us at: parevalo@bu.edu or bullocke@bu.edu.

Contents

Background

	Background

Documentation

Tutorials

	CCDC Results Visualization Tutorial (GUI)
	Creating charts of time series and interacting with them

	Loading CCDC results

	Visualizing CCD coefficients and change information

	Land cover tutorial (GUI)
	CCDC Classification Interface

	1. Classify time series segments

	2. Create Land Cover and Land Cover Change Maps

	Land cover tutorial (API)
	Part 1: Submit Change Detection

	Part 2: Prepare training data

	Part 3: Classify time series segments

	Part 4: Land Cover Mapping

	Obtaining coefficients, changes and synthetic images (API)
	Access the API and load CCDC results

	Obtain CCDC coefficients and synthetic images

API REFERENCE

	API REFERENCE
	CCDC

	Inputs

	Classification

	Dates

	Change

Background

TODO

CCDC Results Visualization Tutorial (GUI)

By Paulo Arévalo. May 14, 2020

To faciliate easy access to our API we have created a series of graphical user
interfaces (GUIs) that require no coding by the user. These guis can be used for
calculating CCDC model parameters (i.e. regression coefficients), displaying
and interacting with CCDC coefficients and corresponding pixel time series, and
classification of the model parameters. This tutorial will demonstrate the GUI
for exploring Landsat time series and temporal segments fitted by the
CCDC algorithm, as well as visualizing coefficients of the temporal segments,
predicted imaged and change information.

In this guide you will learn how to:

	Explore time series of Landsat observations for a single pixel, as well as
the temporal segments fitted on them by the CCDC algorithm.

	Visualize different coefficients of the temporal segments over space.

	Visualize images predicted from the temporal segments.

	Visualize change information.

The tool use in this tutorial can be found
here [https://glance.earthengine.app/view/visualizeccd].

The tool might look like in the image below when you load it for the first time.
To make sure you can visualize the map, please lower the separator bar that
divides the map area and the time series chart area shown below.

The panel on the left controls the parameters for running CCD interactively
for any point in the world with Landsat coverage. The panel on the right
controls the interaction with the loaded CCDC results, and allows you to
create predicted (synthetic) images, visualize maps of CCDC
coefficients, and map the changes detected by the algorithm.

[image: CCDC visualizer interface]
Lower the horizontal division on top if the map is not visible..

Creating charts of time series and interacting with them

If you want to visualize time series of Landsat spectral bands or a subset of
indices derived from them given location, use the panel on the left to set up
the desired band and time range (Box 1). Other CCD parameters can be left at
their default parameters. In the example below, time series of the SWIR1 band
are displayed after clicking on the map. You will notice that there are some
segments missing in the chart. If this happens, you need to increase the Num
segments parameter (e.g. to 10) in the Visualization params section (Box 2) and
click on the pixel again. Creating the chart might take a little longer.
You can also click on the points in the chart and they will be added to the map
according to the visualization parameters selected for the RGB combination
(Box 3). Right now any changes made there are not set on the fly, you need to
set them before clicking on the map for them to take effect. In the image below,
I clicked in one of the points and the image loaded with the default RGB combination.

[image: Time series chart]
Time series of a pixel with agricultural dynamics in Brazil

The left panel also allows you to add any of your own assets (either image or
feature collection) to the map. Given the current limitations imposed by GEE,
the assets need to be publicly shared to be “seen” by the app, or they need to
be shared by the owner of the app. In the example below I changed the band to
display NBR time series and modified the start date to begin in 1985. I set
an RGB combination of NIR/SWIR1/RED that will be used to display the images
loaded from the time series chart. Finally, I clicked on a pixel, and then
clicked in the point show in the time series chart to visualize the
image for that date.

[image: Time series chart 2]
Setting the parameters to run CCD on the fly and visualize images from
the time series chart

Loading CCDC results

In order to use the subpanels on the right panel to generate maps of predicted
images, coefficients and changes, you need to load pre-existing CCDC results.
After this step is done, the rest of the sections in the tools can be used in
any order. Keep in mind that this steps is not necessary to visualize
the time series of clicked points in the map (left panel of the tool).
To load pre-existing CCDC results, look at the top right panel in the app,
it must look like this:

[image: Load panel]
Select which CCDC resutls to load using this panel. Once loaded, it will
display the available band names and suspected date format of the results,
if stored in the metadata at the time of creation.

The first few parameters describe the format of the CCDC results.
First, are they saved as a single image or a collection? Next is the path to
the CCDC results.Even though they are not officially public yet, we can
interact with some of the CCD results that have been executed by Google.
The default values, particularly the “z” in the filter CCDC run, contain results
for the period between 1999-2020. After setting the desired run prefix, you can
click on the Load image button. When the two fields below the
button show their corresponding information, you will be able interact with the
rest of the options in the control panel in any order.

Visualizing CCD coefficients and change information

Once the results have loaded, you can use the subpanels in the right as follows,
in any order:

Generate predicted images: You can use the Create synthetic image panel to
generate a predicted surface reflectance image for the date you specify. This is
done by finding the intersecting temporal segement and using the coefficients
to generate a predicted image for that date. The image will be displaed using
the RGB combination specified using the dropdown boxes.

[image: Synthetic Image]
Example of a predicted (synthetic) image circa 2001-01-01 for South America.
The RGB color combination is NIR-SWIR1-RED

Generate maps of CCDC coefficients: You can use the Visualize coefficients
panel to query and visualize the model coefficients and RMSE that intersect a
given date. You can either visualize individual coefficient and specify the min
and max values to stretch the visualization to, or you can create RGB images of
different bands and min/max stretch values. In the image below you can see the
RMSE of the nearest segment circa 1995 for a location in Brazil. You can see
the fire scars are visible in the loaded image. You can experiment with
changing the bands, coefficients and RGB combination.

[image: RMSE circa 1995]
Example of an image showing the RMSE of the fitted model circa 1995 for a
region in Brazil, with its corresponding legend on the left, and the time
series of the NBR index and fitted models for a clicked pixel in that
general area.

Visualize change information: You can use the Visualize change panel to
generate the following change layers:

	Max change magnitude: Value of the largest detected change for the specified
time period and spectral band, as measured by the difference between the end
and start point of adjacent temporal segments.

	Time of max magnitude of change: For the given date range and spectral band,
visualize the time when the max detected change magnitud ocurred.

	Number of changes: For the specified time period, display the total number
of changes detected.

The image below show an example of the timing of max magnitude of change for
the period 1994-1997 in the SWIR1 band, capturing the extent of the fire scars
shown before very clearly.

[image: Timing of max magnitude of change]
Map of the timing of max magnitud of change between 1994-1997 for the SWIR1
band, delineating the fire scars in this region of Brazil.

Land cover tutorial (GUI)

	CCDC Classification Interface

	1. Classify time series segments

	2. Create Land Cover and Land Cover Change Maps

CCDC Classification Interface

By Eric Bullock May 7, 2020

[image: app region 1]
Classification of CCDC model parameters for Uganda.

To faciliate easy access to our API we have created a series of graphical
user interfaces (GUIs) that require no coding by the user. These guis can be
used for calculating CCDC model parameters (i.e. regression coefficients),
displaying and interacting with CCDC coefficients and corresponding pixel
time series, and classification of the model parameters. This tutorial will
demonstrate the gui for creating land cover and land cover change maps.

In this tutorial you will:

	Classify CCDC segments based on their model parameters and ancillary
data

	Extract a land cover map for a specific date

	Calculate land cover change between two or more dates

I provide example training data and CCDC coefficients for seven
countries in East Africa (Rwanda, Uganda, Ethiopia, Tanzania, Kenya,
Zambia, and Malawi).

The first tool that be used in this tutorial can be found
here [https://code.earthengine.google.com/?scriptPath=projects%2FGLANCE%3AAPPS%2Fclassify_app].

1. Classify time series segments

This first step is to classify the time series segments that are the
output from the CCDC algorithm. Users should refer to Zhu and Woodcock
(2014) for a detailed explanation of the CCDC algorithm. For a
refresher, however, the example belows shows the CCDC model fit for the
time series of one pixel. On the x-axis is time, and the y-axis is
reflectance. Each observation corresponds to a different image at that
same location. The parameters of the harmonic regression models, are
what we are classifying in this procedure. Thus, we are not classifying
Landsat observations, but rather the temporally-continuous model
segments. It should be noted that these models are unique for each
pixel, and therefore have a unique start and end time depending on land
cover or condition change.

[image: CCDC Example]
Example CCDC time series for a pixel that is deforested but later
return to secondary forest.

This result of part 1 of this tutorial will be an image with bands
corresponding to the pixel’s nth land cover label for nbands. In other
words, band 1 is the first segment’s classification, band 2 is the
second, and so on. Theoretically, a pixel can have dozens of segments.
That is very rare, however, since the changes correspond to land change
occuring within that pixel. Thus, to reduce computational intensity we
limit the number of segments that are classified in this application to
6 per pixel.

The first step is to load the app, you should see a panel like this
appear:

[image: app load screen]
The first step in the app is to load the coefficients.

These first few parameters describe the format of the CCDC results.
First, are they saved as a single image or a collection? Next is the path to
the CCDC results. In this example, we provide an example of an
ImageCollection of results with the path ‘projects/LCMS/SERVIR_CCDC’.
Finally, you must specify the date format that the results were run
with. For the example dataset they are in the format of ordinal years
(0). Click Load.

[image: app second parameters]
Next comes parameter specification.

Next are the parameters of the machine learning classifier and predictor
variables. Uncheck any bands, coefficients, or ancillary data that you
do not wish to be used as inputs to classification. The terrain inputs
are from the 30m SRTM global
DEM [https://doi.org/10.1029/2005RG000183], while the climate inputs
are from the WorldClim BIO Variables
V1 [https://doi.org/10.1002/joc.1276].

The next option lets you decide how to define the region to classify and
export. As you’ll see, there are many options. Most of them revolve
around a global grid that we have created for the Global Land Cover
Mapping and Estimation (GLanCE) project. More information on the GLanCE
grid grid can be found on the project
website [http://sites.bu.edu/measures/].

[image: app third parameters]
The global GLanCE grid.

There are four ways you can specify a tile to run in addition to
manually defining the study region or selecting a country. The simplest
option is to choose “Tile Intersecting Point”, and then click somewhere
on the map. You will see the grid overlapping the location you selected
loaded as the study region.

[image: app region 1]
Define study region from the global grid.

Alternatively, you can manually define the study region by clicking on
five points on the map that define the borders.

[image: app region 1]
Manually define study region.

The other options are to manually define output grids based on their
tile IDs, drawing on the map to specify multiple grids, or selecting a
country. If multiple grids are selected then each grid will be submitted
as a seperate task. If a country is selected then the entire country
boundary will be the study region.

[image: app region 1]
Or an entire country!

The final set of parameters relate to the training data. An example
training dataset is provided as a FeatureCollection for the seven
countries noted above. The training data requires that each point has an
attribute identifying the land cover label, and must also correspond to
a specific year for training. You have the option to use the entire
FeatureCollection or only the points that fall within the study region.

[image: app region 1]
Classification of the first CCDC segment.

Note, the classification runs quicker if the predictor data for each training
point is saved in the feature’s properties (as opposed to being calculated
on the fly. I recommend doing this process in a seperate task, and then using
the data with the predictors attached to quickly try classification parameters.
You should see in the Console a note about whether or not the predictor
data must be sampled as the training points. If so, you can also submit
a task that will save this calculation for future use.

Finally, when you click ‘Run Classification’, the classification
corresponding to the first segment period gets displayed on the map. In
this case, the models correspond to ~1999. The full classification stack
can be exported as a task that should appear with the description
“classification_segments”.

2. Create Land Cover and Land Cover Change Maps

Once the task has completed processing, we can use it to make landcover
maps at any date in time for the study region. This asset can be used
directly in the Landcover
Application [https://code.earthengine.google.com/?scriptPath=projects%2FGLANCE%3AAPPS%2Flandcover_app].
This application is relatively simple - all you need to do is specify
the path to the segment image created above and a list of dates and
voilà! The dates should be entered in the format ‘YYYY-MM-DD’ and
seperated by commas, for example “2001-01-15, 2001-07-21, 2014-12-10”.
Each band in the output image will correspond to a different date’s
classification.

[image: app region 1]
Land cover classification for 2001-01-01.

This app also has the function to add a change between that represents
conversion from one or multiple classes at a specified date to a
specified class or group of classes. You must first specify the starting
and ending dates and the land cover class # labels for the corresponding
dates. For example, the following examples shows the pixels (red) that
are class 1 (forest) in 2001-01-01, and are either class 2, 3, 4, or 5
in 2014-01-15. In other words, deforestation from January 2001 to June
2016. You can also specify a single value for the Class (To) box, for
example just using 3 would map conversion from 1 to 3, or forest to
cropland. If these boxes are left empty then just the land cover maps
will be created.

Finally, the tool allows you to specify some visualization parameters.
This step is very straightforward, just list the land cover names
and corresponding numeric value, and optionally provide a palette.

[image: app region 1]
Land cover in 2001 and deforestation between 2001 and 2014.

By default, an opaque hillshade layer is loaded on top of the classification.
I find this helps provide context when viewing landscapes that I am
unfamiliar with. However, you can simply turn this off in the layers tab.

[image: hillshade]
Classified map with a hillshade overlay.

Land cover tutorial (API)

	Part 1: Submit Change Detection
	CCDC API

	Building and image stack

	Part 2: Prepare training data
	Training data requirements:

	Optional additional steps

	Importing your training data as an Earth Engine Asset

	Creating a numeric land cover attribute

	Add a year attribute

	Get predictor data for each training point

	Add unique IDs as attributes

	Part 3: Classify time series segments
	Classification requirements:

	Converting the CCDC coefficient data to an image that can be classified

	Part 4: Land Cover Mapping
	Mapping Requirements

Part 1: Submit Change Detection

Continuous Change Detection and Classification (CCDC) is a land change
monitoring that was designed to operate on dense time series of Landsat
data. Until recently, use of CCDC has been limited to high-performance
computing clusters due to the heavy computation requirements. However,
thanks to the outstanding engineers at Google and the US Forest Service,
it is now available on the Google Earth Engine (GEE). For a detailed
description of the methodology please refer to:

Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and
classification of land cover using all available Landsat data. Remote
sensing of Environment, 144, 152-171.

CCDC, as the name implies, has two major components: change detection
and classification. This part of the tutorial will focus on the change
detection component. Spectral change is detected on a pixel level by
testing for structural breaks on the pixel’s time series. In GEE, this
process is referred to as ‘temporal segmentation’, as the pixel-level
time series are segmented according to periods of unique reflectance. It
does so by fitting harmonic regression models to all spectral bands in
the time series. The model-fitting starts at the beginning of the time
series, and moves forward in time in an “online” approach to change
detection. The coefficients are used to predict future observations, and
if the residuals of the future observations exceed a statistical
boundary for numerous consecutive observations then a change is
detected. After the change, a new regression model is fit and the
process continues until the end of the time series.

I am not going to go into all of the details of the algorithm, because
they are explained in the manuscript above. If this is all new to you, I
encourage you to experiment with our CCDC time series viewer app:

https://glance.earthengine.app/view/tstools

Simply navigate to a location (or choose User Location to navigate to
your current location), pick a Landsat spectral band, and click on the
map to see the CCDC fit to the location you clicked. For example, here
is an example of the SWIR1 time series of a location in Rwanda that was
forest, converted to cropland, and then converted again to a plantation.

[image: Figure 1. TSTools Earth Engine App]
Figure 1. TSTools Earth Engine App

In that example, there were two changes detected: one in 2007 and one in
2010. At this point there are no classification labels associated with
the changes, they are simply structural breaks found by the algorithm.
This example is for a single pixel, however, and we wish to perform
analysis over all the pixels in a study region. This tutorial will
demonstrate how to do just that.

CCDC API

To faciliate processing of CCDC mapping on GEE, we have developed an API
that contains functions for generating input data, running CCDC,
filtering the results, creating “synthetic” Landsat imagery, and
classifying the change detection results. The API functions can be found
here, and loaded from the following repository:

var utils = require('projects/GLANCE:ccdcUtilities/api')

Building and image stack

The CCDC function in GEE can take any ee.ImageCollection that has been
masked for clouds and cloud shadows. CCDC contains an internal cloud
masking algorithm and is rather robust against missed clouds, but the
cleaner the data the better. If you wish to build your own Image
collection, I refer you to the GEE Examples repo. Alternatively, to
obtain an image collection of Landsat 4, 5, 7, and 8 data that is masked
using the cfmask band you can use the ‘getLandsat’ function in the
‘Inputs’ module of our api. The parameters for building an image collection
and running CCDC live within a seperate parameter file [https://gee-tutorials.readthedocs.io/en/latest/lctutorial/params.html]

// Load example parameter file
var params = require('projects/GLANCE:Tutorial/params.js')

// Filter by date and a location in Brazil
var filteredLandsat = utils.Inputs.getLandsat()
 .filterBounds(params.StudyRegion)
 .filterDate(params.ChangeDetection.start, params.ChangeDetection.end)

print(filteredLandsat.size())

The console should show that there are around images in the collection. It
should be noted that CCDC uses all available Landsat data, even if part
of the image is cloudy! That is because there can be many usable,
cloud-free pixels even if a majority of the image is cloudy. Since CCDC
operates on the pixel time series, those observations are still usable.

Now, we can use this Image Collection into the
ee.Algorithms.TemporalSegmentation.Ccdc algorithm and retrieve a
multi-dimensional array containing model coefficients, model RMSE, and
change information for every detected segment. That means that the
dimensions for one pixel can be different than another, depending on the
number of model breaks. Documentation on the CCDC parameters are in the
GEE Docs, so I will not elaborate on them here.

// First define parameters
var changeParams = {
 collection: filteredLandsat,
 breakpointBands: params.ChangeDetection.breakpointBands,
 tmaskBands: params.ChangeDetection.tmaskBands,
 minObservations: params.ChangeDetection.minObservations,
 chiSquareProbability: params.ChangeDetection.chiSquareProbability,
 minNumOfYearsScaler: params.ChangeDetection.minNumOfYearsScaler,
 dateFormat: params.ChangeDetection.dateFormat,
 lambda: params.ChangeDetection.lambda,
 maxIterations: params.ChangeDetection.maxIterations
 }

var results = ee.Algorithms.TemporalSegmentation.Ccdc(changeParams)
print(results)

And like that, you have run the change detection component of CCDC! A
quick note on the output bands:

	tStart: The start date of each model segment.

	tEnd: The end date of each model segment.

	tBreak: The model break date if a change is detected.

	numObs: The number of observations used in each model segment.

	changeProb: A numeric value representing the multi-band change
probability.

	*_coefs: The regression coefficients for each of the bands in the
image collection.

	*_rmse: The model root-mean-square error for each segment and input
band.

	*_magnitude: For segments with changes detected, this represents
the normalized residuals during the change period.

The array can now be saved as an array image. In my experience, array
images require the ‘pyramidingPolicy’ to be ‘sample’.

The next part of the tutorial we will go through the process of
formatting training data to be used in classification.

Part 2: Prepare training data

The second step in performing land cover analysis using CCDC is
collecting training data. There are a few requirements for the training
data for it to work with the rest of the process. This tutorial
demonstrates how to ensure your data meets these requirements.

Training data requirements:

	The data must be an Earth Engine FeatureCollection of point
geometries.

	An attribute in each point must contain a numeric value indicating
the associated land cover.

	An attribute in each point must contain a year that corresponds to
the land cover label.

Optional additional steps

	The predictor data as attributes for each point and for the year that
corresponds to the land cover label.

	Unique sample IDs as attributes

Importing your training data as an Earth Engine Asset

I am not going to go into details, as that has been documented in depth
on Google’s Developer
Page [https://developers.google.com/earth-engine/importing]. However,
it’s worth making sure your data is the correct format. You can do that
by printing out the first feature.

// Load example parameter file
var params = require('projects/GLANCE:Tutorial/params.js')

var trainingData = ee.FeatureCollection(params.Classification.trainingPath)
print(trainingData.first())

In the console, you should see information on the first training point.
Select the feature and then select ‘geometry’. Make sure the the ‘type’
is ‘Point’, like in the figure below. If it is anything else (such as
Rectangle or Polygon) then your must convert your data to points before
continuing.

Creating a numeric land cover attribute

The land cover label must be numeric, so it cannot be a string (such as
“forest”) or a numeric string (or a number that is written in string
format). To check the type of your attribute select the ‘JSON’ button on
the right side of the console to expand the json representation of the
feature. The button is circled in red below:

[image: img1]
img1

You should see the JSON of the feature appear:

[image: img2]
img2

Note that my feature has three attributes: lc_string, numeric, and
numeric_string. The lc_string attribute will not work because the
classifiers require numeric class property. In the first picture, where
the output is formatted, the numeric and numeric_string both look like
they’d work. But when viewing the JSON representation, it can be seen
that the numeric_string still has quotations, and thus is still
formatted as a string. Therefore, only the numeric attribute would work
for this tutorial.

If you do not have a numeric attribute indicating land cover you can
convert a string attribute to numeric using the ‘remap’ Earth Engine
(EE) function. The code to do so is rather straightforward, but we have
a helper function in our API. For this example, I’ll demonstrate how
it’s done using the EE function and our CCDC API, and hereforth I’ll
mostly be relying on the API.

In pure EE code, and using the class attribute name in the above example
and assuming our only classes are ‘forest’,’agriculture’,and ‘water’,
you can convert them to numeric values in a new attribute ‘landcover’
with the following code:

trainingData = trainingData.map(function(feat) {
 return feat.set('landcover',feat.get('lc_string'))})
 .remap(['forest','agriculture','water'],[1,2,3],'landcover')

This can also be done using the ‘remapLC’ function in our API. See the API documentation [https://gee-tutorials.readthedocs.io/en/latest/api/api.html] for a full description of available functions.

// First load the API file
var utils = require('projects/GLANCE:ccdcUtilities/api')

trainingData = utils.Classification.remapLC(
 fakeFC, 'lc_string', 'landcover',['forest','agriculture','water'],[1,2,3])

print('First training point: ', trainingData.first())

Note that there should now be an attribute called ‘landcover’ that is
numeric.

Add a year attribute

In order to determine the CCDC coefficients to use as predictors for
training the classifier, each point needs to have a year attribute to
query the CCDC results by. For example, if you know a training point
corresponds to forest in 2014, then the CCDC coefficients for 2014 will
be used for training. If all of your training data corresponds a certain
year, you can add the attribute with a simple bit of code. In this
example the training data corresponds to 2014 and it is assigned to an
attribute named ‘year’.

trainingData = trainingData.map(function(feat) {
 return feat.set('year',2014)})

Get predictor data for each training point

We need to extract predictor data for each training point before we can apply
a classifier. We can do this either manually right before submitting the
classification, or we can extract the predictors in advance and store them as
properties of each of the training points. For this tutorial we will use the
second way, because it enables a faster classification that will load “on the fly”.
This is useful for testing classification parameters. The function to do this
is called ‘getTrainingCoefsAtDate’. First, however, we need to construct the
CCDC coefficient image to sample from.

// Define bands to use in classification
var bands = params.Classification.bandNames

// Define coefficients to use in classification
var coefs = params.Classification.coefs

// Segment ids
var segs = params.Classification.segs

// Property corresponding to year of training data
var yearProperty = params.Classification.yearProperty

// CCDC change detection results from the first part of this tutorial.
var coefImage = ee.ImageCollection(params.Classification.changeResults)
 .filterBounds(params.StudyRegion).mosaic()

// Load ccd image stack with coefficients and change information

var ccdImage = utils.Classification.loadResults(
 params.Classification.resultFormat,
 params.Classification.changeResults,
 params.StudyRegion)

print('CCD Image:', ccdImage)

// Finally, get ancillary topographic and climate data
var ancillary = utils.Inputs.getAncillary()

Now that we have the CCDC image we can calculate the predictor data for
each point, filter features that return no data, and export the results
as an asset.

var trainingData = utils.Classification.getTrainingCoefsAtDate(
 trainingData, coefs, bands, yearProperty, ancillary, ccdImage, segs)

// Filter points with no data
var testBand = params.Classification.bandNames[0] + '_' + params.Classification.coefs[0]
trainingData = trainingData.filter(ee.Filter.notNull([testBand]))

print('First training point with predictors:', trainingData.first())

Export.table.toAsset({
 collection: trainingData,
 description: 'trainingDataProcessed',
 assetId: params.Classification.trainingPathPredictors})

You should now see in the feature attributes all of the predictor data
that can be used for classification.

Add unique IDs as attributes

Another optional, but recommended, step is assigning each sample with a
unique ID as an attribute. EE gives each point an ID, but they can be
long and seemingly random. The ‘assignIDs’ function in our API will
shuffle the sample and assign a unique ID to a given attribute name.

trainingData = utils.Classification.assignIds(trainingData, 'ID')

Part 3: Classify time series segments

The third step in performing land cover classification using CCDC is to
use the training data from step 2 in a machine learning classifier to
classify each CCDC segment. Note that each pixel can have a different
number of segments depending on the number of changes detected. That is
why the coefficients for CCDC are stored in n-dimensional arrays,
because each pixel can have a different number of dimensions depending
on the changes detected. This means that the process is slightly more
complicated than a simple supervised classification, but this tutorial
will go through it all.

A code example using GLANCE data and parameters can be found here:

https://code.earthengine.google.com/?scriptPath=projects%2FGLANCE%3ATutorial%2FPart%202.%20Classification

Classification requirements:

	The training data must be specified in the format described in Part 2
of this tutorial.

	A machine learning classifier.

Converting the CCDC coefficient data to an image that can be classified

The API functions ‘loadResults’ in the Classification module and ‘getAncillary’ in
the Inputs module can be used to create the CCDC stack with ancillary data to
classify.

// First load the API file
var utils = require('projects/GLANCE:ccdcUtilities/api')

// Define a couple parameters
var bandNames = ["BLUE","GREEN","RED","NIR","SWIR1","SWIR2","TEMP"]
var inputFeatures = ["INTP", "SLP","PHASE","AMPLITUDE","RMSE"]
var ancillaryFeatures = ["ELEVATION","ASPECT","DEM_SLOPE","RAINFALL","TEMPERATURE"]
var numberOfSegments = 6
var classProperty = 'landcover'
var trainProp = .2
var seed = Math.ceil(Math.random() * 1000)
var studyArea = ee.Geometry.Polygon(
 [[[-65.11727581440459, -8.755437491733284],
 [-65.11727581440459, -13.240578578777912],
 [-59.470303158154586, -13.240578578777912],
 [-59.470303158154586, -8.755437491733284]]], null, false);
var trainingDataPath = 'PATH/TO/YOUR/TRAINING/DATA'
var classifier = ee.Classifier.smileRandomForest({
 numberOfTrees: 150,
 variablesPerSplit: null,
 minLeafPopulation: 1,
 bagFraction: 0.5,
 maxNodes: null
})

// Obtain the CCDC change detection array
var ccdcArray = 'PATH/TO/YOUR/CCDC/ARRAY'

// Next, turn array image into image
var imageToClassify = utils.CCDC.buildCcdImage(ccdcArray, numberOfSegments, bandNames)

// Now get ancillary data
var demImage = ee.Image('USGS/SRTMGL1_003').rename('ELEVATION')
var slope = ee.Terrain.slope(demImage).rename('DEM_SLOPE')
var aspect = ee.Terrain.aspect(demImage).rename('ASPECT')
var bio = ee.Image('WORLDCLIM/V1/BIO')
 .select(['bio01','bio12'])
 .rename(['TEMPERATURE','RAINFALL'])
var ancillary = ee.Image.cat([demImage, slope, aspect, bio])

Next, we can actually do the classification! We’ve already defined the
parameters above, so we can then use the ‘classifySegments’ function to
classify the CCDC segments.

// Now do the actual classification add the first segments classification to the map

// Get training data as FC
var trainingData = ee.FeatureCollection(trainingDataPath)

// Optionally filter by study area
trainingData = trainingData.filterBounds(studyArea)

var results = utils.Classification.classifySegments(
 imageToClassify, numberOfSegments, bandNames, ancillary, ancillaryFeatures,
 trainingData, classifier, studyArea, classProperty, inputFeatures)
 .clip(studyArea)

// Get a legend and visualization parameters from the api.
var viz = utils.Results.viz
var legend = utils.Results.legend

Map.addLayer(results.select(0), viz, 'Seg1 Classification')
Map.add(legend)

[image: img1]
img1

And just like that, we can get a classified land cover map! The layer
added represents the first segment land cover.

Part 4: Land Cover Mapping

The output of part 3 was a stack of land cover classifications organized
by CCDC models. Each pixel contains different model start and end times,
so the land cover label for each band corresponds to different time
periods for each pixel. Well that’s not very helpful, is it?

Part 4 of this tutorial demonstrates how to go from the classification
“stack” to a map of land cover at a specific year, or change between
years.

Mapping Requirements

	A classified ‘stack’ of as demonstrated in Part 3 of this tutorial

To go from a classified image stack to a classification at a date is
relatively straightforward. To get a land cover classification at a
specific date we can use the ‘getLcAtDate’ function in our API.

var utils = require('projects/GLANCE:ccdcUtilities/api')
var classificationStack = '/PATH/TO/IMAGE/STACK'
var dateOfClassification = '2014-03-27'
var matchingDate = classUtils.getLcAtDate(classificationStack,
 dateOfClassification)

This can easily be extended to map change between two dates. In this
example we calculate the post-deforestation land cover between 2000 and
2018

var class2000 = utils.Classification.getLcAtDate(classificationStack,
 '2000-01-01')

var class2018 = utils.Classification.getLcAtDate(classificationStack,
 '2018-01-01')

var deforestation = class2000.eq(5)
 .and(class2018.neq(5))

Map.addLayer(deforestation.selfMask(),
 {palette: 'red'},
 'Deforestation')

var postDefClass = class2018.updateMask(deforestation)

var viz = utils.Results.viz

Map.addLayer(postDefClass,
 viz,
 'Post-Deforestation Class')

Note that the post-disturbance land cover is almost entirely from the
‘Herbaceous’ class.

[image: img1]
img1

In the above example, the Forest class corresponds to the number 5. This
process can be repeated to map any type of land cover change for the
classes in your legend. For example, the following example shows
expansion of river water west of Porto Velho (Cyan are pixels that were
converted from non-water to water)..

var regrowth = class2000.neq(5).and(class2000.neq(0))
 .and(class2018.eq(5))

Map.addLayer(regrowth.selfMask(),
 {palette: 'cyan'},
 'Regrowth')

[image: New Water]
New Water

Obtaining coefficients, changes and synthetic images (API)

Access the API and load CCDC results

This tutorial requires access to the API. It also requires access to any
results obtained from running the CCDC algorithm on Google Earth Engine
(GEE). For this tutorial we can use the results created by the GEE team
for the entire globe. As of May 27, 2020, these results include
multiple runs with varying inputs and configurations, and therefore we
need to filter the results for a specific model run before we can
process them. A model run we have been using so far is the 'z_'
model, but others include the BRDF-corrected 'brdf'.
Until the GEE team publishes an official public dataset, we can use the
'z_' or 'brdf' for testing purposes. Finally, if we want to look
at the results for a specific location we can filter them using the
built-in filterBounds function, or remove it if we want to see the
results for the current map view extent.

// First load the API file
var utils = require('projects/GLANCE:ccdcUtilities/api')

// Load the global results computed by the GEE team
var ccdcCol = ee.ImageCollection("projects/CCDC/v2")
var ccdc = ccdcCol.filterMetadata('system:index', 'starts_with', 'z_')
 .filterBounds(geometry)
 .mosaic()

Obtain CCDC coefficients and synthetic images

The CCDC module provides functions that facilitate obtaining any
coefficient for any point in the time within the range of the results.
In the case of the global results generated by the GEE team, the time
period corresponds to 1999 to 2019. Since the CCDC algorithm can be run
in three different time formats, it is important to know which format
was used to encode the results. The results used here were computed
using fractional years, therefore we need to convert the date we want to
obtain coefficients for to that format. This can be done using the
Dates module:

Get date in the right format

var inputDate = '2001-12-30'
var dateParams = {inputFormat: 3, inputDate: inputDate, outputFormat: 1}
var formattedDate = utils.Dates.convertDate(dateParams)

In the example above, we convert the input date into fractional year,
corresponding to the outputFormat 1. Other output formats are: 0
for Julian days, and 2 for Unix time.

Obtain CCDC results in ‘regular’ image format

The CCDC outputs are stored as array images to facilitate storing the
variable-length arrays that are computed by the algorithm, as it is not
known in advance how many temporal segments will be obtained for each
pixel. However, operating on those arrays and displaying them tends to
be slower than using a regular ee.Image(). For this reason, we
convert the array image results into a regular image using the
utils.CCDC.buildCcdImage function. The function expects the CCDC
results, the number of segments we want to extract, and the names of the
spectral bands.

// Spectral band names. This list contains all possible bands in this dataset
var BANDS = ['BLUE', 'GREEN', 'RED', 'NIR', 'SWIR1', 'SWIR2', 'TEMP']

// Names of the temporal segments
var SEGS = ["S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9", "S10"]

// Obtain CCDC results in 'regular' ee.Image format
var ccdImage = utils.CCDC.buildCcdImage(ccdc, SEGS.length, BANDS)

Get coefficients

The resulting image will contain the ee.Image() version of the
results with the number of coefficients specified. A lower number of
segments requested will speed up subsequent processing, but may result
in some missing segments for highly dynamic areas, such as agricultural
lands in California. For several locations, 10 segments seems to be a
good compromise. With this image, we can request any set of bands and
coefficients for a the date we selected above. You can read the API
documentation to specify the other parameters of the get_multi_coefs
function.

// Define bands to select.
var SELECT_BANDS = ['RED', 'NIR']

// Define coefficients to select. This list contains all possible segments
var SELECT_COEFS = ["INTP", "SLP", "COS", "SIN", "COS2", "SIN2", "COS3", "SIN3", "RMSE"]

// Obtain coefficients
var coefs = utils.CCDC.getMultiCoefs(ccdImage, formattedDate, SELECT_BANDS, SELECT_COEFS, true, SEGS, 'after')

Compute synthetic image

The regression models can be used to calculate the surface reflectance
of any of the bands for any point in time within the data time range
(i.e. 1999 to 2019 in our case). This image is called a synthetic image,
and it is computed with the getMultiSynthetic function.

// Bands to get surface reflectance for
var SUB_BANDS = ['RED', 'NIR', 'SWIR1', 'SWIR2']

// Obtain synthetic image
var synt = utils.CCDC.getMultiSynthetic(ccdImage, formattedDate, 1, BANDS, SEGS)

Get change information

Finally, to obtain change information we can use the filterMag
function. The function expects the CCDC results in the regular image
format, start and end dates in the correct date format, the spectral
band for which to get the information, and the list of segments defined
previously.

var changeStart = '2001-01-01'
var changeEnd = '2018-12-31'
var startParams = {inputFormat: 3, inputDate: changeStart, outputFormat: 1}
var endParams = {inputFormat: 3, inputDate: changeEnd, outputFormat: 1}
var formattedStart = utils.Dates.convertDate(startParams)
var formattedEnd = utils.Dates.convertDate(endParams)

var filteredChanges = utils.CCDC.filterMag(ccdImage, formattedStart, formattedEnd, 'SWIR1', SEGS)

The image filteredChanges contains three bands:

	'MAG': Represents the magnitude of the largest change for the
specified time range and band.

	'tBreak': Represents the date when the change with the largest
magnitude occurred.

	'numTbreak': Represents the total number of changes in the
specified time period.

API REFERENCE

CCDC

	
buildSegmentTag(nSegments)

	Create sequence of segment strings

	Arguments

	
	nSegments (Integer) – Number of segments to create labels for

	Returns

	{ee.List) List of segment names (e.g. S1, S2)

	
buildBandTag(tag, bandList)

	Create sequence of band names for a given string tag

	Arguments

	
	tag (string) – String tag to use (e.g. ‘RMSE’)

	bandList (array) – List of band names to combine with tag

	Returns

	{ee.List) List of band names combined with tag name

	
buildMagnitude(fit, nSegments, bandList)

	Extract CCDC magnitude image from current CCDC result format

	Arguments

	
	fit (ee.Image) – Image with CCD results

	nSegments (number) – Number of segments to extract

	bandList (array) – Client-side list with band names to use

	Returns

	{ee.Image) Image with magnitude of change per segment per band

	
buildRMSE(fit, nSegments, bandList)

	Extract CCDC RMSE image from current CCDC formatted results

	Arguments

	
	fit (ee.Image) – Image with CCDC results

	nSegments (number) – Number of segments to extract

	bandList (array) – Client-side list with band names to use

	Returns

	{ee.Image) Image with RMSE of each segment per band

	
buildCoefs(fit, nSegments, bandList)

	Extract CCDC Coefficients from current CCDC formatted result

	Arguments

	
	fit (ee.Image) – Image with CCD results

	nSegments (number) – Number of segments to extract

	bandList (array) – Client-side list with band names to use

	Returns

	{ee.Image) Image with coefficients per band

	
buildStartEndBreakProb(fit, nSegments, tag)

	Extract data for CCDC 1D-array, non-spectral bands (tStart, tEnd, tBreak, changeProb or numObs)

	Arguments

	
	fit (ee.Image) – Image with CCD results

	nSegments (integer) – Number of segments to extract

	tag (string) – Client-side string to use as name in the output bands

	Returns

	{ee.Image) Image with values for tStart, tEnd, tBreak, changeProb or numObs

	
buildCcdImage(fit, nSegments, bandList)

	Transform ccd results from array image to “long” multiband format

	Arguments

	
	fit (ee.Image) – Image with CCD results

	nSegments (number) – Number of segments to extract

	bandList (array) – Client-side list with band names to use

	Returns

	{ee.Image) Image with all results from CCD in ‘long’ image format

	
getSyntheticForYear(image, date, dateFormat, band)

	Create synthetic image for specified band

	Arguments

	
	image (ee.Image) – Image with CCD results in long multi-band format

	date (number) – Date to extract the segments for, in the format that ccd was run in

	dateFormat (number) – Code of the date format that ccdc was run in (e.g. 1 for frac years)

	band (string) – Band name to use for creation of synthetic image

	Returns

	{ee.Image) Synthetic image for the given date and band

	
getMultiSynthetic(image, date, dateFormat, band)

	Create synthetic image for a list of bands

	Arguments

	
	image (ee.Image) – Image with CCD results in long multi-band format

	date (number) – Date to extract the segments for, in the format that ccd was run in

	dateFormat (number) – Code of the date format that ccdc was run in (e.g. 1 for frac years)

	band (array) – List of bands to get synthetic data for

	Returns

	{ee.Image) Synthethic image for the given date and bands

	
fillNoData(fit, nCoefs, nBands, clipGeom)

	
Note

Deprecated: (No longer necessary)

Replace nodata in CCD output and fill with zeros
Assumes current CCDC result format

	Arguments

	
	fit (ee.Image) – Image with CCD results

	nCoefs (number) – Number of coefficients present in the results

	nBands (number) – Number of spectral bands used to produce the results

	clipGeom (ee.Geometry) – Geometry of the image that is being masked

	Returns

	{ee.Image) Image with nodata areas replaced with zeros

	
dateToDays(strDate)

	
Note

Deprecated: (No longer necessary)

Return a date as days from 01-01-0000

	Arguments

	
	strDate (String) – Date in the format accepted by ee.Date

	Returns

	ee.Number – Date expressed as days since 01-01-0000

	
filterCoefs(ccdResults, date, band, coef, behavior)

	Filter coefficients for a given date using a mask

	Arguments

	
	ccdResults (ee.Image) – CCD results in long multi-band format

	date (string) – Date in the same format that CCD was run with

	band (string) – Band to select.

	coef (string) – Coef to select. Options are “INTP”, “SLP”, “COS”, “SIN”, “COS2”, “SIN2”, “COS3”, “SIN3”, “RMSE”, “MAG”

	behavior (String) – Method to find intersecting (‘normal’) or closest segment to given date (‘before’ or ‘after’) if no segment intersects directly

	Returns

	ee.Image – Single band image with the values for the selected band/coefficient

	
normalizeIntercept(intercept, start, end, slope)

	Normalize the intercept to the middle of the segment time period, instead
of the 0 time period.

	Arguments

	
	intercept (ee.Image) – Image band representing model intercept

	start (ee.Image) – Image band representing model slope date

	end (ee.Image) – Image band representing model end date

	slope (ee.Image) – Image band representing model slope

	Returns

	ee.Image – Image band representing normalized intercept.

	
getCoef(ccd, date, bandList, coef, behavior)

	Get image of with a single coefficient for all bands

	Arguments

	
	ccd (ee.Image) – results CCD results in long multi-band format

	date (string) – Date in the same format that CCD was run with

	bandList (array) – List of all bands to include.

	coef (array) – Coef to select. Options are “INTP”, “SLP”, “COS”, “SIN”, “COS2”, “SIN2”, “COS3”, “SIN3”, “RMSE”, “MAG”

	behavior (string) – Method to find intersecting (‘normal’) or closest segment to given date (‘before’ or ‘after’) if no segment intersects directly

	Returns

	ee.Image – coefs Image with the values for the selected bands x coefficient

	
applyNorm(bandCoefs, segStart, segEnd)

	Apply normalization to intercepts

	Arguments

	
	bandCoefs (ee.Image) – Band x coefficients image. Must include slopes

	segStart (ee.Image) – Image with dates representing the start of the segment

	segEnd (ee.Image) – Image with dates representing the end of the segment

	Returns

	ee.Image – bandCoefs Updated input image with normalized intercepts

	
getMultiCoefs(ccd, date, bandList, coef_list, cond, segNames, behavior)

	Get image of with bands x coefficients given in a list

	Arguments

	
	ccd (ee.Image) – results CCD results in long multi-band format

	date (string) – Date in the same format that CCD was run with

	bandList (array) – List of all bands to include. Options are “B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7”

	coef_list (list) – List of coefs to select. Options are “INTP”, “SLP”, “COS”, “SIN”, “COS2”, “SIN2”, “COS3”, “SIN3”, “RMSE”, “MAG”

	cond (boolean) – Normalize intercepts? If true, requires “INTP” and “SLP” to be selected in coef_list.

	segNames (ee.List) – List of segment names to use.

	behavior (string) – Method to find intersecting (‘normal’) or closest segment to given date (‘before’ or ‘after’) if no segment intersects directly

	Returns

	ee.Image – coefs Image with the values for the selected bands x coefficients

	
getChanges(ccd, startDate, endDate, segNames)

	Filter segments with change in a given range

	Arguments

	
	ccd (ee.Image) – results CCD results in long multi-band format

	startDate (Number) – Start date in the format that was used to run CCD

	endDate (Number) – End date in the format that was used to run CCD

	segNames (ee.List) – List of segment names matching the number of segments in the bands

	Returns

	ee.Image – Mask image indicating which pixel/segments have changes in the specified time range.

	
filterMag(ccd, startDate, endDate, band, segNames)

	Obtain change with largest magnitude, timing of that break, and total number of breaks
for a given date range and band

	Arguments

	
	ccd (ee.Image) – results CCD results in long multi-band format

	startDate (number) – Start date in the format that was used to run CCD

	endDate (sumber) – End date in the format that was used to run CCD

	band (string) – Spectral band

	segNames (ee.List) – List of segment names matching the number of segments in the bands

	Returns

	ee.Image – Image with three bands indicating: 1) Magnitude of the largest break for the given date range 2) Timing of largest break (in the time units CCDC was run in) 3) Total number of breaks in the date range

	
phaseAmplitude(ccd, bands, sinName, cosName)

	Get phase and amplitude for a single spectral band

	Arguments

	
	ccd (ee.Image) – results CCD results in long multi-band format

	bands (List) – List with the name of the bands for which to calculate ampl. and phase

	sinName (String) – Band suffix of the desired sine harmonic coefficient (e.g ‘_SIN)

	cosName (String) – Band suffix of the desired sine harmonic coefficient (e.g ‘_COS)

	
ccdc.newPhaseAmplitude(ccd, sinExpr, cosExpr)

	Get phase and amplitude. Replace old function with this.

	Arguments

	
	ccd (ee.Image) – results CCD results in long multi-band format

	sinExpr (String) – Regular expression of the sine harmonic coefficient (e.g ‘.*SIN.*’) for all harmonics

	cosExpr (String) – Regular expression of the cosine harmonic coefficient (e.g ‘.*COS.*) for all harmonics. Must retrieve the same number of bands as sinExpr

Inputs

	
getLandsat(options, start, end, targetBands)

	Get Landsat images for a specific region
Possible bands and indices: BLUE, GREEN, RED, NIR, SWIR1, SWIR2, NDVI, NBR, EVI, EVI2,BRIGHTNESS, GREENNESS, WETNESS

	Arguments

	
	options (ee.Dict) – Parameter file containing the keys below

	start (String) – First date to filter images

	end (String) – Last date to filter images

	targetBands (list) – Bands and indices to return

	Returns

	ee.ImageCol. Masked image collection with L4, L5, L7, and L8

	
generateCollection(geom, startDate, endDate)

	Generate and combine filtered collections of Landsat 4, 5, 7 and 8

	Arguments

	
	geom (ee.Image) – Geometry used to filter the collection

	startDate (String) – Initial date to filter the collection

	endDate (String) – Final date to filter the collection

	Returns

	ee.ImageCollection – Filtered Landsat collection

	
doIndices(collection)

	Calculate spectral indices for all bands in collection

	Arguments

	
	collection (ee.ImageCollection) – Landsat image collection

	Returns

	ee.ImageCollection – Landsat image with spectral indices

	
makeLatGrid(options, minY, maxY, minX, size)

	Create a grid with features corresponding to latitudinal strips

	Arguments

	
	options (Dictionary) – parameter file

	minY (Number) – minimum latititude coordinate

	maxY (Number) – maximum latititude coordinate

	minX (Number) – minimum longitude coordinate

	minX – maximum longitude coordinate

	size (Number) – size of features in units of latitudinal degrees

	Returns

	ee.FeatureCollection – grid of features along latitudinal lines

	
makeLonGrid(options, minY, maxY, minX, size)

	Create a grid with features corresponding to longitudinal strips

	Arguments

	
	options (Dictionary) – parameter file

	minY (Number) – minimum latititude coordinate

	maxY (Number) – maximum latititude coordinate

	minX (Number) – minimum longitude coordinate

	minX – maximum longitude coordinate

	size (Number) – size of features in units of latitudinal degrees

	Returns

	ee.FeatureCollection – grid of features along longitudinal lines

	
makeLonLatGrid(minY, maxY, minX, size)

	Create a grid with features corresponding to longitudinal strips

	Arguments

	
	minY (Number) – minimum latititude coordinate

	maxY (Number) – maximum latititude coordinate

	minX (Number) – minimum longitude coordinate

	minX – maximum longitude coordinate

	size (Number) – size of features in units of latitudinal degrees

	Returns

	ee.FeatureCollection – grid of features along longitudinal lines

	
getAncillary()

	Get ancillary data for trainning and classification.

	Returns

	ee.Image – Multi-band image containing ancillary layers

	
getS2(roi)

	Get Sentinel-2 surface reflectance data.
Taken directly from GEE examples repo.

	Arguments

	
	roi (ee.Geometry) – target study area to filter data

	Returns

	(ee.ImageCollection) Sentinel-2 SR and spectral indices

	
getS1(mode="'ASCENDING'", focalSize=3)

	Get Sentinel 1 data

	Arguments

	
	mode (string) – orbital pass mode (‘ASCENDING’ or ‘DESCENDING’)

	focalSize (number) – window size for focal mean (1 means no averaging)

	Returns

	ee.ImageCollection – Sentinel 1 collection with VH, VV, and ratio bands smoothed with focal mean

	
calcNDFI(Surface)

	Calculate NDFI using endmembers from Souza et al., 2005

	Arguments

	
	Surface (ee.Image) – reflectance image with 6 bands (i.e. not thermal)

	Returns

	ee.Image – NDFI transform

	
makeCcdImage(metadataFilter, segs, numberOfSegments, bandNames, inputFeatures)

	Make a ccd image from the most recent known global run

	Arguments

	
	metadataFilter (String) – Which ccdc run prefix to use

	segs (List) – List with the segment names

	numberOfSegments (Number) – Max number of segments to retrieve from the CCDC results

	bandNames (List) – List with the band names to use

	inputFeatures (List) – List with the CCDC features to extract

	Returns

	ee.Image – Filtered CCDC results in ‘long’ format

	
calcNDVI(image)

	Calculate NDVI for an image

	Arguments

	
	image (ee.Image) – Landsat image with NIR and RED bands

	Returns

	ee.Image – NDVI image

	
calcNBR(image)

	Calculate NBR for an image

	Arguments

	
	image (ee.Image) – Landsat image with NIR and SWIR2 bands

	Returns

	ee.Image – NBR image

	
calcEVI(image)

	Calculate EVI for an image

	Arguments

	
	image (ee.Image) – Landsat image with NIR, RED, and BLUE bands

	Returns

	ee.Image – EVI transform

	
calcEVI2(image)

	Calculate EVI2 for an image

	Arguments

	
	image (ee.Image) – Landsat image with NIR and RED

	Returns

	ee.Image – EVI2 transform

	
tcTrans(image)

	Tassel Cap coefficients from Crist 1985

	Arguments

	
	image (ee.Image) – Landsat image with BLUE, GREEN, RED, NIR, SWIR1, and SWIR2

	Returns

	ee.Image – 3-band image with Brightness, Greenness, and Wetness

	
makeAutoGrid(geo, size)

	Create a grid with features overlaying the bounding box of a geometry

	Arguments

	
	geo (ee.Geometry) – geometry to use as spec for grid

	size (Number) – size of features in units of degrees

	Returns

	ee.FeatureCollection – grid of features along

Classification

	
getMiddleDate(fc, startProp, endProp, middleProp)

	Get the middle segment date of training data

	Arguments

	
	fc (ee.FeatureCollection) – Training data feature collection

	startProp (string) – Property name of segment start year

	endProp (String) – Property name of segment end year

	middleProp (String) – Property name of calculated middle attribute

	Returns

	ee.FeatureCollection – Training data with middleProp attribute

	
makeGrids(region, count, size, seed)

	Make random grids in a region of interest

	Arguments

	
	region (ee.Geometry) – study region bounding geometry

	count (number) – number of random grids

	size (number) – length of one side of grid in m^2

	seed (number) – random number seed or ‘random’

	Returns

	ee.FeatureCollection – feature collection of random grids

	
getBinaryLabel(fc, property, targetClass)

	Convert training data to binary label for target class

	Arguments

	
	fc (ee.FeatureCollection) – Training data feature collection

	property (string) – Property label indicating class label

	targetClass (number) – Class to retain as 1 in binary label

	Returns

	ee.FeatureCollection – Training data where 1 = targetClass and 0 equals all other classes

	
getClassProbs(fc, coefsToClassify, classList, classifier, property)

	Get class probability for each class in training data

	Arguments

	
	fc (ee.FC) – feature collection of training data

	coefsToClassify (ee.Image) – multi-band image of coefficients to classify

	classList (list) – classes to test probability of

	classifier (ee.Classifier) – in ‘PROBABILITY’ mode

	property (string) – label defining class in training data

	Returns

	ee.Image – image with each band being class probability for each input class

	
getTrainingCoefsAtDate(trainingData, coefNames=['INTP','SLP','COS','SIN','RMSE','COS2','SIN2','COS3','SIN3'], bandList=['BLUE','GREEN','RED','NIR','SWIR1','SWIR2'], dateProperty="'Start_Year'", extraBands=null, ccdcImage=null, segs=["S1", "S2", "S3", "S4", "S5", "S6"], ccdcDateFmt=1, trainingDateFmt=1, scale=30, landsatParams={start: '1990-01-01',end: '2020-01-01'})

	Get coefficients at a given date for each feature in collection

	Arguments

	
	trainingData (ee.FeatureCollection) – training data points to extract coefficients for

	coefNames (List) – coefficient abbreviated names in order of results

	bandList (List) – list of input band names in order

	dateProperty (string) – property name containing date in features

	extraBands (List) – ancillary bands to add as predictors

	ccdcImage (ee.Image) – Use ccdc coefficients instead of calculating on the fly

	segs (List) – Segment identifiers for ccdcImage parameter

	ccdcDateFmt (number) – date format of ccdc date format

	trainingDateFmt (number) – training data date format (according to ccdc syntax)

	scale (number) – spatial scale to sample training points at

	landsatParams (Object) – parameters for ‘getLandsat’ function

	Returns

	ee.FeatureCollection – training data with coefficients corresponding to specific date

	
remapLC(feats, inLabel, outLabel, inList, outList)

	Remap training labels to GLANCE level 1 land cover

	Arguments

	
	feats (ee.FeatureCollection) – training data feature collection

	inLabel (string) – attribute name containing land cover strings

	outLabel (string) – attribute name for output numeric land cover

	inList (list) – list of input land cover string values

	outList (list) – list of output land cover numeric values

	Returns

	ee.FeatureCollection – training data feature collection with numeric ‘outLabel’ column in each feature

	
assignIds(sample, attributeName="ID")

	Shuffle the sample and assign sample ID

	Arguments

	
	sample (ee.FeatureCollection) – training data of point samples

	attributeName (string) – name to assign ID attribute to

	Returns

	ee.FeatureCollection – training data shuffled with unique ID attribute

	
makeLegend(classes, palette, title="'Legend'", width="'250px'", position="'bottom-right'")

	Make a legend widget

	Arguments

	
	classes (array) – list of input classes

	palette (array) – list of color palette

	title (string) – legend title (optional)

	width (string) – width of panel (optional)

	position (string) – position on map (optional)

	Returns

	ui.Panel – legend panel to display on map

	
classifyCoefs(imageToClassify, bandNames, ancillary, ancillaryFeatures, trainingData, classifier, studyArea, classProperty="'LC_Num'", coefs, trainProp=.4, seed='random')

	Classify single set of CCDC coefficients. Useful for quick parameter testing and debugging.

	Arguments

	
	imageToClassify (ee.Image) – Single set of ccdc coefficients to classify

	bandNames (array) – list of band names to classify

	ancillary (array) – list of ancillary predictor data

	ancillaryFeatures (ee.Image) – ancillary data image

	trainingData (ee.FeatureCollection) – training data

	classifier (ee.Classifier) – earth engine classifier with parameters

	studyArea (ee.Geometry) – boundaries of region to subset training data, null uses all data.

	classProperty (string) – attribute name with land cover label

	coefs (array) – list of coefficients to classify

	trainProp (float) – proportion of data to use subset for training

	seed (number) – seed to use for the random column generator

	Returns

	ee.Image – classified image

	
classifySegments(imageToClassify, numberOfSegments, bandNames, ancillary, ancillaryFeatures, trainingData, classifier, studyArea, classProperty="'LC_Num'", coefs, trainProp=.4, seed='random', subsetTraining=true)

	Classify stack of CCDC coefficient, band-separated by segment

	Arguments

	
	imageToClassify (ee.Image) – ccdc coefficient stack to classify

	numberOfSegments (number) – number of segments to classify

	bandNames (array) – list of band names to classify

	ancillary (array) – list of ancillary predictor data

	ancillaryFeatures (ee.Image) – ancillary data image

	trainingData (ee.FeatureCollection) – training data

	classifier (ee.Classifier) – earth engine classifier with parameters

	studyArea (ee.Geometry) – boundaries of region to subset training data, null uses all data.

	classProperty (string) – attribute name with land cover label

	coefs (array) – list of coefficients to classify

	trainProp (float) – proportion of data to use subset for training

	seed (number) – seed to use for the random column generator

	subsetTraining (boolean) – true to subset training to geometry, false to not

	Returns

	ee.Image – classified stack of CCDC segments

	
parseConfMatrix(im, attribute="'confMatrix'")

	Parse confusion matrix from string

	Arguments

	
	im (ee.Image) – classified image with confusion matrix in metadata

	attribute (string) – name of attribute with confusion matrix

	
accuracyProcedure(trainingData, imageToClassify, predictors, bandNames, ancillary, classifier, classProperty="'LC_Num'", seed='random', trainProp=.4)

	Calculate accuracy metrics using a subset of the training data

	Arguments

	
	trainingData (ee.FeatureCollection) – training data

	imageToClassify (ee.Image) – ccdc coefficient stack to classify

	predictors (array) – list of predictor variables as strings

	bandNames (array) – list of band names to classify

	ancillary (array) – list of ancillary predictor data

	classifier (ee.Classifier) – earth engine classifier with parameters

	classProperty (string) – attribute name with land cover label

	seed (number) – seed to use for the random column generator

	trainProp (float) – proportion of data to use subset for training

	Returns

	ee.ConfusionMatrix – a confusion matrix as calculated by the train/test subset

	
getLcAtDate(segs, date, numberOfSegments, ccdVersion, metadataFilter, behavior, bandNames, inputFeatures)

	Calculate landcover at a date based on pre-classified segments

	Arguments

	
	segs (ee.Image) – classified ccd segment image

	date (string) – date of land cover to retrieve in format ‘YYYY-MM-DD’

	numberOfSegments (number) – number of segments in classification image

	ccdVersion (string) – version of ccd used for classification

	metadataFilter (string) – metadata used for classification of ccd

	behavior (string) – behavior when date is in between segments (‘none’,’before’,’after’)

	bandNames (array) – list of band names (such as “BLUE”,”GREEN”)

	inputFeatures (array) – list of input feature names (such as “INTP” and “RMSE”)

	Returns

	ee.Image – matchingDate landcover classification image at date specified in parameter

	
getMode(folder, matchingString)

	Get mode classification from a stack of overlapping result files

	Arguments

	
	folder (string) – the path to the folder containing the result files

	matchingString (string) – an identifier in the result file names

	Returns

	ee.Image – band-wise mode classification

Dates

	
msToDays(ms)

	milliseconds since epoch (01-01-1970) to number of days

	Arguments

	
	ms (Number) – ms since 01-01-1970)

	Returns

	ee.Number – milliseconds since epoch

	
dateToJdays(str_date)

	Convert Date to julian days (i.e. days since 01-01-0001)

	Arguments

	
	str_date (String) – Date string in yyyy-mm-dd format

	Returns

	ee.Number – Julian day

	
jdaysToms(jdays)

	Convert julian day (i.e. days since 01-01-0001) to ms since 1970-01-01

	Arguments

	
	jdays (Number) – Julian day

	Returns

	ee.Number – ms since 1970-01-01

	
jdaysToDate(jdays)

	Convert julian day (i.e. days since 01-01-0001) to ee.Date

	Arguments

	
	jdays (Number) – Julian day

	Returns

	ee.Date – ee.Date

	
msToJdays(ms)

	Convert ms since 1970-01-01 to julian day (i.e. days since 01-01-0001)

	Arguments

	
	ms (Number) – ms since 1970-01-01

	Returns

	ee.Number – Julian day

	
msToFrac(ms)

	Convert ms since 1970-01-01 to fractional year

	Arguments

	
	ms (Number) – ms since 1970-01-01

	Returns

	ee.Number – Fractional year

	
msToDate(ms)

	Convert ms to ee.Date

	Arguments

	
	ms (number) – jdays as milleconds

	Returns

	ee.Date – ee.Date

	
fracToms(frac)

	Convert fractional time to ms since 1970-01-01. DOES NOT ACCOUNT FOR LEAP YEARS

	Arguments

	
	frac (Number) – Fractional year

	Returns

	ee.Number – ms since 1970-01-01

	
convertDate(options)

	Convert between any two date formats

	Arguments

	
	options (Dictionary) – parameter dictionary

	Returns

	Object – output reformatted date

Change

Index

 A
 | B
 | C
 | D
 | F
 | G
 | J
 | M
 | N
 | P
 | R
 | T

A

 	
 	accuracyProcedure() (built-in function)

 	
 	applyNorm() (built-in function)

 	assignIds() (built-in function)

B

 	
 	buildBandTag() (built-in function)

 	buildCcdImage() (built-in function)

 	buildCoefs() (built-in function)

 	
 	buildMagnitude() (built-in function)

 	buildRMSE() (built-in function)

 	buildSegmentTag() (built-in function)

 	buildStartEndBreakProb() (built-in function)

C

 	
 	calcEVI() (built-in function)

 	calcEVI2() (built-in function)

 	calcNBR() (built-in function)

 	calcNDFI() (built-in function)

 	
 	calcNDVI() (built-in function)

 	ccdc.newPhaseAmplitude() (ccdc method)

 	classifyCoefs() (built-in function)

 	classifySegments() (built-in function)

 	convertDate() (built-in function)

D

 	
 	dateToDays() (built-in function)

 	
 	dateToJdays() (built-in function)

 	doIndices() (built-in function)

F

 	
 	fillNoData() (built-in function)

 	filterCoefs() (built-in function)

 	
 	filterMag() (built-in function)

 	fracToms() (built-in function)

G

 	
 	generateCollection() (built-in function)

 	getAncillary() (built-in function)

 	getBinaryLabel() (built-in function)

 	getChanges() (built-in function)

 	getClassProbs() (built-in function)

 	getCoef() (built-in function)

 	getLandsat() (built-in function)

 	getLcAtDate() (built-in function)

 	
 	getMiddleDate() (built-in function)

 	getMode() (built-in function)

 	getMultiCoefs() (built-in function)

 	getMultiSynthetic() (built-in function)

 	getS1() (built-in function)

 	getS2() (built-in function)

 	getSyntheticForYear() (built-in function)

 	getTrainingCoefsAtDate() (built-in function)

J

 	
 	jdaysToDate() (built-in function)

 	
 	jdaysToms() (built-in function)

M

 	
 	makeAutoGrid() (built-in function)

 	makeCcdImage() (built-in function)

 	makeGrids() (built-in function)

 	makeLatGrid() (built-in function)

 	makeLegend() (built-in function)

 	
 	makeLonGrid() (built-in function)

 	makeLonLatGrid() (built-in function)

 	msToDate() (built-in function)

 	msToDays() (built-in function)

 	msToFrac() (built-in function)

 	msToJdays() (built-in function)

N

 	
 	normalizeIntercept() (built-in function)

P

 	
 	parseConfMatrix() (built-in function)

 	
 	phaseAmplitude() (built-in function)

R

 	
 	remapLC() (built-in function)

T

 	
 	tcTrans() (built-in function)

Parameter file

It is helpful to define a seperate file for parameters, then you can reference the parameter file in all subsequent code. An example of a parameter file can be found [here](https://code.earthengine.google.com/?scriptPath=projects%2FGLANCE%3ATutorial%2Fparams.js)

 _images/classify1.png
tapheira

Fontanila

_static/plus.png

_images/classifyApp1.png
Classify CCDC Segments (BETA)

ad CCDC results

Image or Collection?

Image Collection &
CCDC coefficients projects/LCMS/SERVIR_CC
Date Format? Fractional Years (1)]

Load

_images/ccdcVizInterface.png

_static/file.png

_images/changeExample.png
Earth Engine Apps

CCD TS controls.

Select band =0
Start date 19850101
End date 20200101
Lambda 0002
Max 10000
iterations
SWIR1_RMSE 19950101

Min A
observations 0 —
Chi square 099
prob Time of max magnitude 19941997
Min years 133 1o0s
scaler
Num 5
segments

NeR SO 05

NeR SO 05

NeR SO 05
Ancillary data
Assetpath o selection 0

Load ssset

Surface reflectance
(NBR)

1988 1990

1902

1994

1996

1998

Q

Search places

2000

2002

fit1

2004

2006

fit2

Terms of Use | Report a map eror

2008

fit3

2010

2012

2014

fite fit7

2016 2018

vate 2001-01-01
RED band Selectavalue.. &
GREEN band Selectavalue.. &
BLUE band Selectavalue.. &
Stretch (Min) 0
Stretch (Max) 06

Create Image
Date 199501-01

single coefficient?

swRi: RMsES O o1
Select £ Select 3 0 U
Select 3 selects O g

Show image

Start date 19940101

End date 1997-01-01

Magnitude band swR1 2

Min magnitude 0

Max magnitude 015

Change layer Time of max magnite

Load changes

_static/minus.png

_images/classifyApp5.png
lania

Dar es Sali
o

Define Study Region: rije mtersecting point +

Click a location on the map to load the intersecting tile

_images/classifyApp6.png
wal 2obi Define Output Re

Bur.

3 Define Study Region: | coury Goundary +

laam
Country: fanzania &

_images/classifyApp2.png
Classification Parameters

Dates (YYYY-MM-DD); 2001-01-01
Comma separated

Classifier Select avalue... 3

Predictor Variables

CCDC Model Parameters
/Bl VINTP
VB2 MSLP
v/B3 ~COS
/B4 VSIN
v/B5 ~C0S2
v/B7 SIN2
v/B6 ~COS3
~/SIN3
~RMSE
Ancillary inputs:
v/ ELEVATION ~ /RAINFALL
~ ASPECT ~/ TEMPERATURE

~/ DEM_SLOPE

_images/classifyApp4.png
Arusha

N Momobasa Define Output Region

Define Study Region: pray onmap =

Dar es Salaam
3

Slowly click five points on the map and the application

(will generate a rectangle for the output extent geometry.

_images/classifyApp7.png
Satelite

v
First Segment Land Cover P

[4 fakgandy 225
e /‘i‘\
(= 2

Dungu
. m
Nakuru

. Mighri

Tarime,
Musoma —©

Py

Map data €2020 Google | 50km L1 Termsof Use Report a map error

VIB7 V/SIN2

VIB6 V/COS3
VISING
VIRMSE

Ancillary inputs
V/ELEVATION ~ W/RAINFALL
V/ ASPECT ¥/ TEMPERATURE

¥ DEM_SLOPE

Define Output Region

Define Study Region:

‘Country Boundary 3

Country

Uganda &

Training data procedure

Define training data Siratedy | wimin output Extent +

Training Data users/bullocke/ccde/public/EastAfrica_Ti
Attribute andcover
Training year 2016

Run Classification

_images/coefficientExample.png
Earth Engine Apps

CCD TS controls.

Select band

NeR 5
Start date 19850101
End date 20200101
Lambda 0.002

Max 10000
iterations,

Min 6
observations

Chi square 099

prob

Min years 133
scaler

Num

7
segments
NeR 0 05
NeR 0 05
NeR 0 05
Ancillary data
Asset path o_selection
Loadasset

Experimental

SWIRT_RMSE 199501-01

0

Surface refiectance (

NBR)

CCDC TS, Latitude, Longitude: -63.050, -27.354

1988

1990

1992

1994

1996

1998

2000

2002

2004

fit2

2006

2008

fit3

Imagery £2020 Terabetis | 2kmi——

—fit4

fit5

Report s map eror

— fit6 fit7

2010

2012

2014

2016 2018

vae

20010101
RED band Selectavalue... 3
GREEN band Selectavalue... &
BLUE band Selectavalue.. &
Stretch (Min) 0

Stretch (Max) 06

Create Image

Date 1995-01-01
wSingle coefficient?

Start date 20000101
End date 20100101

Magnitude band Selectavalve.. &

Min magnitude o
Max magnitude

Change layer

_images/TSviewer1.png
Q
Earth Engine Apps

P —
wnnws e PR
s o
DG TS, Lot Longhute: 42258, 20555 . P—

_images/TSviewer2.png
Earth Engine Apps >

[

st
=

e PPeR—
S0 on
e coeicnt

_images/ccdcExample.png
03-04-2003 01-26-2010 07-05-2016

Bullock et al., In Review

0.40 .
=== CCDC Fit (Forest) i i Bullock et al., In Review
0.35 4 .
° CCDC Fit (Cropland) |
0304 ---- Change Detected | l
. . 1 |
05 Observation in Image i o i e
— I g g | o0
o ! [\ PO N | 3 4 [J
= 0.20 A I p I °
= ! 1 °
n : : ; : ‘ ..) *
4 [
0.15 . i' i . : ®
[
o.1o—h A " * l EW‘ .u h
i ~ ® ° !
0.05 o , :
I I
0.00 ! :

2000 2004 2008 2012 2016 2020

_images/glance_grids.png

nav.xhtml

 Table of Contents

 		
 Google Earth Engine tools for CCDC

 		
 Background

 		
 CCDC Results Visualization Tutorial (GUI)

 		
 Creating charts of time series and interacting with them

 		
 Loading CCDC results

 		
 Visualizing CCD coefficients and change information

 		
 Land cover tutorial (GUI)

 		
 CCDC Classification Interface

 		
 1. Classify time series segments

 		
 2. Create Land Cover and Land Cover Change Maps

 		
 Land cover tutorial (API)

 		
 Part 1: Submit Change Detection

 		
 CCDC API

 		
 Building and image stack

 		
 Part 2: Prepare training data

 		
 Training data requirements:

 		
 Optional additional steps

 		
 Importing your training data as an Earth Engine Asset

 		
 Creating a numeric land cover attribute

 		
 Add a year attribute

 		
 Get predictor data for each training point

 		
 Add unique IDs as attributes

 		
 Part 3: Classify time series segments

 		
 Classification requirements:

 		
 Converting the CCDC coefficient data to an image that can be classified

 		
 Part 4: Land Cover Mapping

 		
 Mapping Requirements

 		
 Obtaining coefficients, changes and synthetic images (API)

 		
 Access the API and load CCDC results

 		
 Obtain CCDC coefficients and synthetic images

 		
 Get date in the right format

 		
 Obtain CCDC results in ‘regular’ image format

 		
 Get coefficients

 		
 Compute synthetic image

 		
 Get change information

 		
 API REFERENCE

 		
 CCDC

 		
 Inputs

 		
 Classification

 		
 Dates

 		
 Change

_images/loadPanel.png
Load CCDC results

Image or Collection? page collectin &

CCDC coefficients projects/CCDC/V2

Filter CCDC run 2

Load image

Available bands are:
BLUEGREENREDNIR,SWIRT,SWIR2, TEMP

Suspected date format is: Fractional years
(code 1)

_images/newWater.png

_images/lcApp1.png
) .
Layers Map Satellite Make Landcover Maps (BETA)

Segment Image users/bullocke/ccde/public/t
Load

Land Cover Bands

Land Cover Dates (YYYY-MM- 20010101
DD); Comma separated

Change band (optional)
Date (From) 20010101 Date (To) 2014.01-01

Class (From) 1 Class (To) 23456

Visualization Parameters (Optional)

Map Classes (String) Forest, Grassland, Cropland,
Palette #33a02c, #b2df8a,#fdbf6f,#1
[Grassland Change Class Name Deforestation
[cropland
[water ' Change Class Color #e31alc
Kig¢ Settlement 4
Kkaz M other) -
siemis I Deforestation L
N N T

_images/lcApp3.png
M settlements

Ho

_images/training1.png
~Feature (Point, 3 properties)
type: Feature
» geonetry: Point (-161.97, 61.57)
~properties: Object (3 properties)
1c_string: forest
numeric: 1
numeric_string: 1

_images/training2.png
type”: "Feature”,
“geometry"”: {
"type": "Point”,

"coordinates”: [
-161.97499523948434,
61.57136996530492

1
b
“properties
"1c_string
“numeric”: 1,
"numeric_string

}

Formatted

_images/postDefClass.png
Garimpo.
8 Jurgena)

g - Novo Satele
- * ESCONDIDO ¥ ;

APiacéS) = do Apui

Paranorte ™

JAPUIRA

Castanheira
A Juara 3

i

CAAS NOVAS Juinal
“PARQUE DO 1 ¥ Novo parana
Rodrigues “ARIPUANA ¢
Aycs™

NAWENE-NAWE

. 4 ol Gest i 4 Jurgera
/ » § ¢ 'g?ﬁ?off NAMBIKWARA

5 §
g &

Eraltacion | San Ramon -
2 Magdalenal *»

. Pimenteiras.
do Oeste

Sapezal
B T¥) Comodoro) & o

Baures)

_images/predictedImgExample.png
Experimental

Earth Engine Apps

€CD TS controls

Select band

swR1 3
Start date 2000-01-01

End date 20200101
Lambda 0.002

Max iterations 10000

Min observations

Chi square prob

Min years scaler 1

Visualization params

Num segments

RED

Ancillary data

Asset path

Load asset

Search places

"Map data 2020 INEGHImagery 62020 NASA, TerraMetics | 500km i

Satellte

Terms of Use

Image or

Image Collection %
Collection?

CCDC coefficients projects/coDCIV2

Filter CCDC run

Load image

Available bands are:
BLUE,GREEN,REDNIR SWIR1 SWIR2, TEMP

Suspected date format is: Fractional years
(code 1)

Create synthetic image

Date 20010101

RED band
‘GREEN band
BLUE band

Stretch (Min)

Stretch (Max) 06

Create Image

isualize coefficients

Date 2001-01-01
Single coefficient?

Selec 3 Selec +
Selec &

Selec 3 Selec +

_images/tstools.png
—fits —fit6

2010 2011 y. 2017 2018 201¢
RN H RS

